

- 1. In your own words, describe what a mole is and why scientists use it.
- 2. How many molecules are in 1 mole of water (H₂O)? How many are in 1 mole of carbon dioxide (CO₂)?
- 3. If you have 5 moles of baseballs, how many baseballs is this? Write a justification for your answer.
- 4. How many moles of Cu do you have if you have 1.806 x 10²³ atoms of Cu?
- 5. Calculate the molar mass of the following compounds. Show your work.

CaSO ₄	MnBr ₃	Sr3(PO4)2	C8H12OH

a. In your own words, describe what molar mass is and how scientists use it

Substance	Molar Mass	Mass in Grams	Number of Moles
NO ₂		672 g	
Ga(CN) ₃			4.2 moles
MgCO ₃		195 g	
H ₂ O			0.65 moles

6. Complete the following table:

1-Step Stoichiometry: Using a chemical reaction.

Phosphorus pentoxide, P_2O_5 , is used as a drying agent (similar those little white packets you find in new backpacks or purses). It is made by reacting solid phosphorus, P, with oxygen gas, O_2 .

$2P(s) + 5O_2(g) \rightarrow P_2O_5(s)$

1. Calculate the molar mass of each compound in the above reaction.

Р	0_2	P_2O_5

2. If a scientist makes 96.8 grams of P_2O_5 , how many moles of P_2O_5 did they make?

a. Roadmap:

- b. Molar Mass:
- c. Set up your t-chart and solve:

- 3. How many moles of O_2 would you use if you had 58.0 grams O_2 ?
 - a. Roadmap:

- b. Molar Mass:
- c. Set up your t-chart and solve:

1-Step Stoichiometry: Moles of 1 substance to grams of the same substance

- 4. What is the mass of 7 moles of ammonium oxide $(NH_4)_2O$?
 - a. Roadmap:

- b. Molar Mass:
- c. Set up your t-chart and solve:

1-Step Stoichiometry: Grams of 1 substance to moles of the same substance

- 5. If you have 59.8 gram of Mg(NO₃)₂, how many moles do you have?
 - a. Roadmap:

- b. Molar Mass:
- c. Set up your t-chart and solve:

Period:	

2- Step Stoichiometry: Grams of 1 substance to moles of a different substance

6. How many moles of H₂O do you have if you have 48.0 grams of oxygen?

a.	Roadmap:		

- b. Determine sub-steps:
- c. Determine Mole Ratio and Molar Masses:
- d. Set up your t-charts and solve:

3-Step Stoichiometry: Grams of 1 substance to grams of <u>a different</u> substance.

7. You have 16.0g of $C_6H_8O_7$. How many grams of carbon do you have?

- c. Determine Mole Ratio and Molar Masses:
- d. Set up your t-charts and solve:

