\qquad
\qquad

1

Chemistry

Quiz Review: Stoichiometry

1. In your own words, describe what a mole is and why scientists use it.
2. How many molecules are in 1 mole of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$? How many are in 1 mole of carbon dioxide $\left(\mathrm{CO}_{2}\right)$?
3. If you have 5 moles of baseballs, how many baseballs is this? Write a justification for your answer.
4. How many moles of Cu do you have if you have 1.806×10^{23} atoms of Cu ?
5. Calculate the molar mass of the following compounds. Show your work.

CaSO_{4}		MnBr_{3}	$\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
			$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OH}$

a. In your own words, describe what molar mass is and how scientists use it
6. Complete the following table:

Substance	Molar Mass	Mass in Grams	Number of Moles
NO_{2}		672 g	
$\mathrm{Ga}(\mathrm{CN})_{3}$			4.2 moles
MgCO_{3}		195 g	
$\mathrm{H}_{2} \mathrm{O}$			0.65 moles

\qquad
\qquad

1-Step Stoichiometry: Using a chemical reaction.
Phosphorus pentoxide, $\mathrm{P}_{2} \mathrm{O}_{5}$, is used as a drying agent (similar those little white packets you find in new backpacks or purses). It is made by reacting solid phosphorus, P , with oxygen gas, O_{2}.

$$
2 \mathrm{P}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})
$$

1. Calculate the molar mass of each compound in the above reaction.

\mathbf{P}	\mathbf{O}_{2}	$\mathbf{P}_{2} \mathbf{O}_{5}$

2. If a scientist makes 96.8 grams of $\mathrm{P}_{2} \mathrm{O}_{5}$, how many moles of $\mathrm{P}_{2} \mathrm{O}_{5}$ did they make?
a. Roadmap:

b. Molar Mass:
c. Set up your t-chart and solve:

3. How many moles of O_{2} would you use if you had 58.0 grams O_{2} ?
a. Roadmap:

b. Molar Mass:
c. Set up your t-chart and solve:

\qquad
\qquad

1-Step Stoichiometry: Moles of 1 substance to grams of the same substance
4. What is the mass of 7 moles of ammonium oxide $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O}$?
a. Roadmap:

b. Molar Mass:
c. Set up your t-chart and solve:

1-Step Stoichiometry: Grams of 1 substance to moles of the same substance
5. If you have 59.8 gram of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, how many moles do you have?
a. Roadmap:

b. Molar Mass:
c. Set up your t-chart and solve:

\qquad
\qquad

2- Step Stoichiometry: Grams of 1 substance to moles of a different substance
6. How many moles of $\mathrm{H}_{2} \mathrm{O}$ do you have if you have 48.0 grams of oxygen?
a. Roadmap: \square

b. Determine sub-steps:
c. Determine Mole Ratio and Molar Masses:
d. Set up your t-charts and solve:

3-Step Stoichiometry: Grams of 1 substance to grams of a different substance.
7. You have 16.0 g of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$. How many grams of carbon do you have?
a. Roadmap:

b. Determine sub-steps:
c. Determine Mole Ratio and Molar Masses:
d. Set up your t-charts and solve:

