Unit 2: Heat and Energy in the Earth's Systems

L4: I Demand Representation

<u>Guiding Question</u>: Explain how a steep specific heat graph compares to a specific heat graph with a small slope.

 Do Now: Calculate the amount of calories I would need to remove from 62 g of aluminum in order to cool it down by 7°C.
C_{aluminum}=0.215cal/g°C

1	Time (minutes)	Air (°C)	Water (°C)	Sand (°C)	Metal (°C)
	0 (initial T)	<mark>25</mark>	25	25	25
	15.0	28.9	26.2	30	35
	30.0	32.5	27.5	35	45
	45.0	36.2	28.8	40	55
	60.0	40	30	45	65

Time (minutes)	Air (°C)	Water (°C)	Sand (°C)	Metal (°C)
0 (initial T)	25	25	25	25
15.0	<mark>28.9</mark>	26.2	30	35
30.0	32.5	27.5	35	45
45.0	36.2	28.8	40	55
60.0	40	30	45	65

)

Time (minutes)	Air (°C)	Water (°C)	Sand (°C)	Metal (°C)
0 (initial T)	25	25	25	25
15.0	28.9	26.2	30	35
30.0	32.5	27.5	35	45
<mark>45.0</mark>	<mark>36.2</mark>	28.8	40	55
60.0	40	30	45	65

Time (minutes)	Air (°C)	Water (°C)	Sand (°C)	Metal (°C)
0 (initial T)	25	25	25	25
15.0	28.9	26.2	30	35
30.0	32.5	27.5	35	45
45.0	36.2	28.8	40	55
60.0	<mark>40</mark>	30	45	65

Time (minutes)	Air (°C)	Water (°C)	Sand (°C)	Metal (°C)
0 (initial T)	25	25	25	25
15.0	28.9	26.2	30	35
30.0	32.5	27.5	35	45
45.0	36.2	28.8	40	55
60.0	40	30	45	65

Notes

- You can determine the specific heat of a substance by graphing how the <u>temperature</u> of a known amount of substance changes <u>over time</u>.
 - The steeper the slope of the line, the <u>lower</u> the specific heat capacity because the temperature is changing more quickly.

Notes

• A slope that is <u>less steep</u> indicates that the temperature is changing <u>slowly</u>. This means that the substance requires a greater amount of energy to increase its temperature and thus has a <u>higher</u> specific heat.

Closure

- Homework #5 Due on Friday
- Quiz on Friday
- Quiz Review 1 Due on Friday
- Workbook 2.1 Due on Friday