Unit 2: Heat and Energy in the Earth's Systems

L7: Massive Change

Guiding Question: How can we use a graph to

 predict information about an object or substance?- Do Now:
- Write this down: "No Do Now for Today"

Notes

- A line of best fit goes through the middle of all the data, rather than connecting the dots.

Notes

- It is useful for predicting the value of an unknown variable given part of the data point.
- If you know x, you can find y by following the x value up to the line and over to the y value
- If you know y, you can find x by following the y value over to the line and down to the x value

Closure

- Homework \#6 due Friday!
- Achieve 3000: These Lights are Too Cool! Due Friday 10/6 at 11:59pm

Some rulers start at the very end of the stick and others have a small space before the actual ruler starts.

Lab Directions

- Pennies used need to be newer than 1983 (so 1984-2017); you need 10
- Measure mass of pennies and height of stack of pennies (turn on side and use ruler, there is a small border on ruler before zero starts)
- Graph data on 2 separate graphs in workbook
- Use a straight edge to draw a straight, best fit line -- DO NOT CONNECT DOTS
- When ready, get an unknown roll from Ms. Wilson -- DO NOT OPEN!
- Measure mass or height of stack, then use that to determine amount of pennies; write down unknown number (on the roll) and how many pennies you think are in there in your workbook.

Significant Figures (SigFigs)

- There are two kinds of numbers:
- Exact - counting
- Inexact - measurements

Rule \#1 - Nonzero

- Nonzero digits always count
-5
-23
$\cdot 248.85$

Rule \#2 - Leading Zeros

- Leading zeros never count as significant digits

4 sig figs

Rule \#3 - Trapped Zeros

-Trapped zeros always count as significant digits.
-1. 88
3 sig figs
-400.5
4 sig figs

Rule \#4 - Trailing Zeros

- Trailing zeros only count when there is a decimal point.
-5
1 sig fig
-500.
3 sig figs

Adding and Subtracting

- Your final answer will have only as many decimal places as the measurement with the fewest decimal places.
- $4.53124 \longleftarrow 5$ decimal places

$$
6.63124
$$

Final Answer $=6.6$

Multiplying and Dividing

- Your final answer will have only as many sig figs as the measurement with the fewest sig figs.
- 13.1

$$
\frac{\times 3.200}{41.92} \longleftarrow 4 \text { sigfigs }
$$

Final Answer = 41.9

Summary

- Nonzeros always count
- Leading zeros never count
- Trapped zeros always count
- Trailing zeros
- With a decimal always count
- Without a decimal never count
- Adding \& subtracting: lowest number of decimals
- Multiplying \& dividing: lowest number of sigfigs

