UNIT 3: ATOMS, ELEMENTS, MOLECULES

reminders from Last week

Molar Mass $=$ the mass of 1 mole of atoms or molecules in grams
-Element - look at the value on the periodic table
"Compound - add the values on the table together to get the total mass
1 mole always represents the same number of units

- 1 mole $=6.02 \times 1023$ atoms $/$ molecules
-Why do different elements have different molar masses if there are the same number of atoms present

GUIDING QUESTION: HOW DO YOU CALCULATE THE MOLAR MASS OF ELEMENTS AND COMPOUNDS, AND HOW DOES THIS RELATE TO WHAT A MOLE OF A SUBSTANCE LOOKS LIKE?
 Do Now (page 2):

Consider 12 nickels, 2 empty aluminum cans, and a balloon full of carbon dioxide gas.
a. Which has the greatest mass?
b. Which has the greatest number of atoms?
c. Which has the greatest number of moles of atoms?

Explain the reasoning behind your answers.

WHAT ARE WE DOING?

Finish Holey Moley (pages 3-7).
Check your answers with the key up front and get stamped by Ms. Wilson.
What's in a Mole? (pages 9-10)
"Complete the second column of the table using the periodic table.
You will complete the last column in Part 2
"Answer questions 2-6 before moving on to the weighing stations for Part 2.

NOTES (PAGE 5)

You can figure out the mass of 1 mole of any element or compound by using the periodic table.
"For a compound, you must sum the molar masses of all the atoms in a molecule
Example:

G。
 CaBr2
 $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

NOTES (PAGE 5)

A mole of atoms or molecules of a solid or liquid is usually an amount that you can hold in your hand. A mole of any gas, if it is at standard temperature and pressure, always has a volume of 22.4 L .

CLOSURE

Mole Posters due Friday (we will have time in class)

