UNIT 3: ATOMS, ELEMENTS, MOLECULES

GUIDING QUESTION: HOW CAN WE USE MOLE RATIOS TO FIND THE MOLES OF PRODUCT GIVEN THE MOLES OF REACTANT?

Do Now:

You are making sandwiches for Chef Wayne. Each sandwich requires 2 slices of bread, 2 slices of turkey, 3 slices of tomato, and 1 slice of cheese.

What is the ratio of bread:turkey:tomato:cheese?

TYPOS!

\#2 - page 22

Step 2: Determine ratio

You are solving for lithium. How many moles of lithium are in 1 mole of $\underline{\underline{L}} \underline{\underline{S}} \underline{\underline{S}}$.
\#3 - page 23
Step 2: Determine ratio.
You are solving for $\underline{N a}_{\mathbf{3}} \underline{\mathbf{P}}$. How many moles of $\underline{\mathrm{Na}}$ are in 1 mole of $\underline{N a}_{3} \underline{\mathbf{P}}$?

STEP UP TO THE LINE:

Scientists sometimes don't need to reference mass or moles directly. Instead they want to compare the components of substances for various reasons -- toxicity, effectiveness of a specific part of a compound, cost, and so on. Scientists use a concept that has been discussed in your math class to do this: ratios. Using ratios, or as a chemist would say, mole ratio, one can compare different elements or parts of compounds to the whole compound or other parts within a compound. We will look at this in the section that follows.

MODEL 1 - Ammonia

KEY

Nitrogen

Hydrogen

LETS REVIEW- MODEL I:

1. In model 1, what atoms are there and how many of each? 1 Nitrogen, 3 Hydrogen
2. Using this, write a possible chemical formula for this compound. $\mathbf{N H}_{3}$
3. Write a ratio for the atoms in this compound. $1 \mathrm{NH}_{3}: 1 \mathrm{~N}: 3 \mathrm{H}$
4. If you had two molecules of ammonia, how many of each atom do you have? $2 \mathrm{NH}_{3}: \mathbf{2 N}: 6 \mathrm{H}$
5. Compare question 4 to question 3. Do these two have the same ratio? Explain your answer. Yes, They have the same exact ratio.

LETS REVIEW- MODEL I:

6. If you have 1 million molecules, how many of each atom do you have?

N: 1 million; H: 3 million

"How does this relate to the ratio in question 3?
It is the same exact ratio!
"Explain how a ratio can help you relate amounts of atoms and molecules.

Ratio's are another conversion factor!
If you have 602 sextillion molecules of ammonia, how much do you have? (HINT: it is one word)
1 Mole!

Calcium

Oxygen

Phosphorus

LETS REVIEW- MODEL 2:

9. In model 2 , what atoms are there and how many of each?

$$
3 \mathrm{Ca}, 8 \mathrm{O}, 2 \text { P }
$$

10. Using this, write a possible chemical formula for this compound.

$$
\mathrm{Ca}_{3} \mathrm{O}_{8} \mathrm{P}_{2}
$$

11. The technical formula for calcium phosphate is $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. How does this compare to your formula? Do they still have the same number of atoms of each? Explain.

Yes! They have the same number of atoms.
12. Write a ratio for the atoms in this compound.

3Ca: 8O: 2P

LETS REVIEW- MODEL 2:

If you have 2 moles of calcium phosphate:
" how many moles of calcium do you have?
6 mol Ca
" how many moles of phosphorus do you have?
4 mol P
"how many moles of oxygen do you have?

16 mol 0

Explain how you can use mole ratios to determine the amount of atoms in a sample.

APPLY IT: YOU HAVE 3.72MOL H_{2} O. HOW MANY MOLES OF HYDROGEN ARE IN THIS SAMPLE?

Step 1: Road Map

Step 2: Determine ratio

$$
1 \mathrm{H}_{2} \mathrm{O}: 2 \mathrm{H}: 1 \mathrm{O}
$$

Step 3: Set-up train track

APPLY IT: A SAMPLE OF LITHIUM SULFIDE, LI S, HAS 0.63MOL. HOW MANY MOLES OF LITHIUM ARE IN THIS SAMPLE?

Step 1: Road Map

Step 2: Determine ratio

1 Li ${ }_{2}$ S: 2Li: $1 S$

Step 3: Set-up train track

$0.63 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{~S}$	2 mol Li		
	$1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{~S}$	$=$	1.26 mol Li
---:			

APPLY IT: YOU NEED 0.32MOL NA FOR A REACTION STUDY. HOW MUCH SODIUM PHOSPHIDE, NA ${ }_{3}$ P, DO YOU NEED FOR IT?

Step 1: Road Map

Step 2: Determine ratio

$1 \mathrm{Na}_{3} \mathrm{P}: 3 \mathrm{Na}: 1 \mathrm{P}$

Step 3: Set-up train track

INDEPENDENT PRACTICE: (PAGE 25)

Directions:

1. On your own, try and solve the 4 practice problems.
2. It is very important that you follow the 3 steps, so you don't make any mistakes.
3. When you have solved all 4 problems, come to the front of the room to check your answers and get a STAMP!

NOTES (PAGE 18)

Mole Ratio: The ratio in which reactants have to combine to form the maximum amount of products.
"You determine the mole ratio by looking at the coefficients in the balanced chemical equation.

Example: Use the the following equation
-
$\mathrm{CH}_{4} \mathrm{O}+$
$\mathrm{O}_{2} \rightarrow$
$\mathrm{CO}_{2}+$
$\mathrm{H}_{2} \mathrm{O}$

NOTES (PAGE 18)

How many moles of carbon dioxide will you make if you react 4 moles of O_{2} ?

