\qquad

Chemistry

Homework: Reactions

1. What is the difference between $\mathrm{NaOH}(\mathrm{s})$ and $\mathrm{NaOH}(\mathrm{aq})$?
2. CaCl_{2} is an example of (justify in the box provided):
a. a phase
b. a compound
c. an element
d. a metal \square
3. Baking soda is a white powder used for baking or cleaning. When you mix baking soda, NaHCO_{3}, with vinegar, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, you get a clear colorless liquid and bubbles of CO_{2}.
a. Draw the reaction. Label where each compound is located ($\mathrm{NaHCO}-{ }_{3}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}, \mathrm{CO}_{2}$). Specify the phase of each of the compounds named in the problem.
b. Is this a chemical or physical change? Justify your answer using evidence in the description above.
c. Where is the sodium, Na , before the change? After the change? How do you know?
d. The reaction for this is as follows. Balance it.

$$
\ldots \ldots \mathrm{NaHCO}_{3}(\mathrm{~s})+\ldots \ldots \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \ldots \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\ldots \ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\ldots \ldots \mathrm{CO}_{2}(\mathrm{~g})
$$

4. What is the law of conservation of mass?
5. An iron nail that stays in contact with water and air starts to form a reddish-brown coating called rust.
\qquad
a. Is this a physical or chemical change? Why?
b. Is rust an element, a compound, or a mixture? Explain your thinking.
c. How could you gather more evidence to support your answer in part b?
6. Balance the following reactions and determine reaction type. SHOW all work.
a. ___ $\mathrm{Na}_{3} \mathrm{PO}_{4}+{ }_{-} \mathrm{KOH} \rightarrow \ldots \mathrm{NaOH}+$ _ $_{3} \mathrm{PO}_{4} \quad$ Type: $_$
b. $\quad \ldots \mathrm{MgF}_{2}+\ldots \mathrm{Li}_{2} \mathrm{CO}_{3} \rightarrow \ldots \mathrm{MgCO} 3+\ldots \quad \mathrm{LiF}$

Type: \qquad
c. ___ $\mathrm{P}_{4}+\ldots \mathrm{O}_{2} \rightarrow$ __ $\mathrm{P}_{2} \mathrm{O}_{3}$

Type: \qquad
d. \qquad _ $\mathrm{Cu} \rightarrow \ldots \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{Ag}$

Type: \qquad
e. \qquad $\mathrm{GaF}_{3}+\ldots \mathrm{Cs} \rightarrow$ \qquad CsF + __Ga

Type: \qquad

